UCRL-JC-119754
PREPRINT

Class of Service
in the High Performance Storage System

S. Louis
D. Teaff

This paper was prepared for submittal to the
IFIP International Conference on Open Distributed Processing
Brisbane, Australia
February 21-24, 1995

January 10, 1995

Thisisapreprintofapaperintended for publicationinajournal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

Class of Service in the High Performance Storage System

S. Loui?and D. Teaft

3_awrence Livermore National Laboratory, Livermore CA 94551-9900 USA louis@nersc.gov

BIBM U.S. Federal, Houston TX 77058-1199 USA teaff@vnet.ibm.com

Quiality of service capabilities are commonly deployed in archival mass storage systems as one
or more client-specified parameters to influence physical location of data in multi-level device
hierarchies for performance or cost reasons. The capabilities of new high-performance storage
architectures and the needs of data-intensive applications require better quality of service
models for modern storage systems. HPSS, a new distributed, high-performance, scalable
storage system, uses a Class of Service (COS) structure to influence system behavior. We
summarize the design objectives and functionality of HPSS and describe how COS defines a set
of performance, media, and usage attributes assigned to storage objects managed by HPSS
servers. COS definitions are used to motivate appropriate behavior and service levels as
requested (or demanded) by storage system clients. We compare the HPSS COS approach with
other quality of service concepts and discuss alignment possibilities.

Keyword Codes: C.4; H.3.4
Keywords: Performance of Systems; Information Storage and Retrieval, Systems and Software

1. INTRODUCTION

A mass storage system is that portion of a computing facility responsible for long-term storage
of information. These systems are shared among users and organized around specialized hard-
ware devices. The complexity of storage systems has undergone rapid advancement over the
past twenty years as modern computers placed increasing demands on support services. The
evolution of storage architectures has been shaped by ever-larger capacities and the rapid
growth of interactive processing, networks, and distributed computing. Storage systems grew
from simple, large peripheral disk and tape devices and utilities, through centralized, but shared
service nodes, and finally to large, complex, often highly distributed, systems supporting
powerful supercomputers and parallel processors.

The sheer size of some storage problems meant that the largest systems were developed at orga-
nizations such as large government research laboratories and scientific supercomputer centers,
using in-house systems engineering expertise. These individual efforts brought about systems
that were heavily dependent on unique elements at each site. Unfortunately, developers usually
made assumptions about who users were and how storage capabilities would be used, forcing
users to interact in prescribed ways to use archival services. Varying levels of transparency were
provided to reduce the complexity of system interaction, but the disadvantage of some transpar-
encies is that efficiency may be lost in resource utilization or performance. Different levels of
service quality were generally not offered. While developers of early storage systems were
certainly aware of service level issues, the tgquality of servicdQoS) sometimes became a

catch-all bucket into which were deposited all manner of long-term, difficult implementation
issues concerning successful administration and operation of a high-performance storage
system.

Client-server and consumer-provider models have been examined for many years within the
mass storage community. The IEEE Mass Storage Systems Reference Models (MSSRMv4 and
MSSRMv5) [1,2] identified high-level abstractions that underlie modern storage systems. The
IEEE view of a storage system is one or more storage device hierarchies, implemented using an
architecture that allows storage services to be distributed throughout the system. Consumers of
storage service interact with standardized providers through well-defined Application Program-
ming Interfaces (APIs). These interactions may be subject to several environmental constraints,
including storage system managemgalicies, administrative requirements, and operational
procedures. Storage system management is discussed in MSSRMv5, but QoS is not explored.

During the time that the IEEE MSSRMs were developed, system managed storage initiatives
were also launched by the GUIDE and SHARE user groups of IBM equipment. These initiatives
stemmed from growing concern about use of manual techniques to allocate and manage large
data center storage, and resulted in new technologies associated with the IBM Data Facility
Storage Management Subsystem product. Automation functions were applied to the manage-
ment of storage space, performance, availability, and configuration, but these functions did not
address heterogeneous, distributed environments.

In distributed computing efforts, such as the Reference Model for Open Distributed Processing
(RM-ODP) [3] and several emerging enterprise management technologies, concepts of QoS,
service level agreements, environment rules and contracts play key roles in determining
whether users receive services that meet their needs. Although the IEEE storage models are not
identical to the RM-ODP storage function, many issues surrounding QoS are common. Align-
ment of future storage system standards with RM-ODP and QoS may prove beneficial for
management of complex, multi-level device hierarchies in highly distributed computing and
storage infrastructures. We describe below how HPSS [4,5], a newly developed high-perfor-
mance storage system, uses a Class of Service (COS) capability allowing users to observe and
specify differing service levels within the storage system.

HPSS is a high-performance storage system for highly parallel computers, as well as traditional
vector supercomputers and workstation clusters, and is a major development project of the
National Storage Laboratory (NSL). The NSL is an industry and U.S. Department of Energy
collaborative project organized to investigate, develop, and commercialize new hardware and
software technologies for high-performance distributed storage [6]. The principal development
partners for HPSS are the U.S. Department of Energy’s Lawrence Livermore, Los Alamos, Oak
Ridge and Sandia National Laboratories, and IBM U.S. Federal. Other development partners
include Cornell University, NASA Lewis, and NASA Langley Research Centers. A major
driver for HPSS was to develop a distributed, high-speed storage system that provides scal-
ability to meet demands of new high performance computers and applications where vast
amounts of data are generated [7,8], such as those under development in the Department of
Energy's Grand Challenges science program, and to also meet the needs of a national informa-
tion infrastructure [9].

COS in HPSS is not based on the RM-ODP QoS model, but incorporates similar ideas. In RM-
ODP, QoS is viewed as a setusfer-perceivedttributes expressed sonsumer-understood
language that describes an available servigemice-boundarys defined separating provider

and consumer. Consumers see QoS but not necessarily service performance. Similarly,
providers see service performance but not necessarily QoS. In contrast, HPSS COS is a set of

system-definedttributes, expressed inpaovider-understoodanguage that describes storage
capabilities. Both QoS and COS help describe the collective behavior of distributed system
objects that may be subject to contractual agreements. The COS design attempts to separate
consumer requirements from actual storage device characteristics, but COS and related data
structures in HPSS are biased toward the service provider. This is because COS was initially
implemented to provide single or parallel data transfer capabilities over possibly striped storage
devices. Providing a consumer view was of secondary concern during early HPSS design.
Enlarging COS beyond its current use to incorporate more of the common QoS parameters (e.g.,
delay, availability, reliability, accuracy, security) is under consideration.

Extending HPSS COS toward a consumer-oriented view to better serve new non-traditional
clients of mass storage suggests aligning future enhancements to COS with RM-ODP standards
and QoS. In addition, the RM-ODP Trading Function [10] may also prove useful in imple-
mentingmiddlewaresoftware solutions to communication, service offer, and service discovery
problems between existing storage systems and new types of clients. These problems occur
frequently in mass storage applications because services requested from applications do not
necessarily coincide with a storage system’s internal view of its offered services. Examples of
middleware tasks might include deciding which of several replicated copies of data to select
based on load or cost optimization schemes, and abilities to screen out or set aside data requests
that may result in hundreds or thousands of random tape mounts and tape read requests. Loca-
tion-independent operations and interfaces may be necessary. Third-party processes to translate
consumer-oriented requests to provider-oriented services in a highly distributed storage system
would be beneficial.

2. HPSS OVERVIEW AND DESIGN OBJECTIVES

The HPSS software architecture is based on the IEEE MSSRMvV5, and is network-centered. The
architecture includes a high-speed network for data transfer and a separate network for control
(see Figure 1). The control network uses the Open Software Foundation's (OSF) Distributed
Computing Environment (DCE) Remote Procedure Call (RPC) technology. In actual imple-
mentations, the control and data transfer networks may be physically separate or shared [11].
Another feature of HPSS is its support for both parallel and sequential input/output (1/0) and
standard interfaces for communication between processors (parallel or otherwise) and storage
devices.

In typical use, clients direct a request to store or retrieve data to an HPSS server. The HPSS
server directs the network-attached storage devices to transfer data directly, sequentially or in
parallel, to or from the client node(s) through the high-speed data transfer network. Local
devices can also transfer data through the HPSS server. HPSS currently supports a TCP/IP
socket programming interface and IPI-3 over HIPPI. Future plans include support for Fibre
Channel Standard (FCS) and Asynchronous Transfer Mode (ATM) networks. COS specifica-
tions can be included with file creation requests to influence behavior of the HPSS servers
regarding initial data placement and subsequent data migration operations. The COS identifier
becomes part of the persistent HPSS metadata for a new file.

The HPSS I/0O architecture is designed to scale as technology improves by using data striping
as a parallel /O mechanism. The system is designed to support application data transfers from
hundreds of megabytes up to a gigabyte per second. File size scalability must meet the needs of
billions of data sets, each potentially terabytes in size, for total storage capacities in petabytes.
The system must also scale geographically to support distributed systems with hierarchies of
distinct storage systems. Multiple systems located in different areas must integrate into a single
logical system accessible by personal computers, workstations, and supercomputers. HPSS

design was also driven by modularity of software components. Each software component is
responsible for a well-defined set of storage objects, and acts as a service provider for those
objects.

Control Network | |

Workstation Clusters | Sequential
or Parallel System Systems

HPSS
Server(s

Network
Attached
Memory

Unix WIS
FEIZISP/R'IIZM Data network throughput
Disk Network is scalable to GB/sec rates
Server(s
Network
Attached
Disk(s)
Unix W/S
Tape Secolr\lnd:asry Servels
Server(s) Visualization Engines -ETP
Network and Frame Buffers -AFS
Attached -DBMS
Control Tape(s) | | |
Network

E-net FDDI WAN

Figure 1L An Example HPSS Configuration

Current applications access HPSS and specify file-related COS characteristics at the file inter-
face level. A COS identifier for a new file can be passed to HPSS using the quote command in
FTP or through a Client API call. The Client API also provides an ability to pass prioritized
hints that can force the assignment of an appropriate COS for a new file. Files in HPSS are
composed of lower-level objects at both a logical and physical level. The management of these
lower-level objects and their individual or collective behavior is also controlled through appro-
priately defined storage class identifiers related to the COS. The importance of new COS capa-
bilities for lower-level objects will grow as the HPSS architecture is used to accommodate
applications that may not be file-based, such as digital libraries, object stores, and large data
management systems.

3. HPSS SOFTWARE ARCHITECTURE AND INFRASTRUCTURE

A simplified view of major HPSS software components is shown in Figure 2. Servers are shown
together with their basic communication paths (thin lines). The thicker lines show data move-
ment. Infrastructure components (tileeholding servers together) are shown at the top. Where
multiple boxes of a particular server appear, it indicates that more than one of those servers may
be running in a specific site implementation.

3.1 Servers

The Name Servemaps a file name to an HP®&file object. This Name Server provides a
POSIX view of a hierarchical name space structure consisting of directories, files, and links.
File names are human readable ASCII strings. In addition to mapping names to objects, the
Name Server provides access verification to objects.

The Bitfile Servermprovides an abstraction of logical bitfiles to its clients. A logical bitfile is an
uninterpreted bit string and is identified bpitile id. Mapping of a human readable name to

the bitfile id is provided by the Name Server. Clients may reference byte-addressable portions
of a bitfile by specifying the bitfile id, a starting address, and length. Using one or more Storage
Servers, the Bitfile Server maps logical portions of bitfiles onto physical storage devices using
storage segment€0OS is primarily used to support this mapping of logical to physical storage
and thus assist the Bitfile Server in choosing appropriate physical storage.

INFRASTRUCTURE
DCE and RPC Transaction Mgmt Metadata Mgmt Security Logging
fe - (_:I_ie_n_t(_s)_ .. Storage Systen
. Name Server(s Manager (SSM
Client API | ! // i \\
FTP Daemop! (all components)
: '=<—=| Bitfile Server |<«— Storage Server(s
. |NFS Daemon/ \ Physical Volume
: ¢ / Library (PVL)
PFS Daemaon'
L __..___.,<|Migration/Purge ¢
* Physical Volume
> Mover(s) Repository (PVR

Figure 2 HPSS Software Architecture Diagram

The Storage Serveprovides a three-layer hierarchy of storage objects: storage segments,
virtual volumesandphysical volumesAll layers of the Storage Server can be accessed by its
clients. The Storage Server translates references to storage segments into references to virtual
volumes and finally to physical volumes. It also schedules the mounting and dismounting of
removable media. Clients of the Storage Server are typically the Bitfile Server at the segment
interface and the Storage System Manager at the virtual and physical volume interface.

The Moveris responsible for transferring data froraaurcedevice to asinkdevice. A device
can be a standard 1/0O device with geometry (e.g., a tape or disk), or a device without geometry
(e.g., a network or memory). The Mover also performs a set of device control operations.

The Physical Volume LibrargPVL) manages all HPSS physical volumes. Clients can ask the
PVL to atomically mount and dismount sets of physical volumes. Clients can also query status
and characteristics of physical volumes. The PVL maintains mappings of physical volumes to
cartridges and cartridges to PVRs. The PVL also controls allocation of drives. When the PVL
accepts client requests for volume mounts, the PVL allocates resources to satisfy the request.

The Physical Volume RepositoifVR) manages HPSS cartridges. Clients ask the PVR to

mount, dismount, inject and eject cartridges. Every cartridge in HPSS must be managed by
exactly one PVR. Clients can also query the status and characteristics of cartridges.

TheMigration and Purge Servarrovides storage management facilities for HPSS. This server
moves (or copies) bitfiles (or storage segments) from one storage level down to the next as spec-
ified in a hierarchy data structure to allow space on the original level to become free. Disk
migration is used to free disk space. Tape migration is used to free tape volumes.

The Storage System Manag&8SM) monitors and controls resources of the storage system
according to site policies. Monitoring includes querying values of managed object attributes
representing storage system resources, and receiving notification of fault alarms and significant
events. Resource control includes abilities to set managed object attribute values and storage
system policy parameters. SSM may also request specific operations be performed on resources
within the system (e.g., adding and deleting logical or physical resources). HPSS managed
objects are based on OSI management model concepts.

3.2 Infrastructure

HPSS design uses a DCE service infrastructure, including DCE RPCs for control messages and
DCE threads for multitasking. HPSS uses DCE Security, Cell Directory, and Time services as
well. A library of DCE convenience functions was also developed for HPSS to facilitate server
communication and to detect failing components.

Requests to HPSS to perform actions, such as creating bitfiles or accessing data, result in client-
server interactions between multiple HPSS components. Transactional integrity to guarantee
consistency of server state and metadata is required if a component should fail. Encina, a Tran-
sarc product, was selected by the HPSS project as its transaction manager and provides distrib-
uted commit-abort semantics, transactional RPCs, and nested transactions. Each HPSS software
component has metadata associated with the objects it manages, and each server requires an
ability to reliably store its metadata. The Structured File Server, another Encina product, is used
by HPSS as a metadata manager and is integrated with the transaction manager.

The security components of HPSS provide authentication, authorization, enforcement, and
audit capabilities for the HPSS components. HPSS developed security libraries that utilize DCE
security. The authentication service, which is part of DCE, is based on Kerberos v5. A logging
service records alarms, events, requests, security audit records, accounting records, and trace
information from system components. A central log and local-node logs are suppatédolg A
function is provided to extract, format, and display log records. Delog options support filtering

by time interval, record type, server, and user.

3.3 Interfaces

HPSS provides several data transfer interfaces. The Client API provides an interface that
mirrors POSIX.1 specifications. Extensions to the POSIX interface are also provided to utilize
HPSS parallel data transfer capabilities, and to allow applications to take advantage of COS hint
and priority structures that can be passed during file creation.

HPSS also provides standard and parallel FTP server interfaces to transfer files from HPSS to
a local file system. Parallel FTP, an extension of standard FTP, was implemented to provide high
performance data transfers and provides high performance FTP transfers to the client while still
supporting standard FTP commands. Use of Parallel FTP requires additional FTP client code.

The NFS Server interface provides transparent access to HPSS name space objects and bitfile
data for client systems through the industry-standard Network File System interface. HPSS also
can act as an external file system to the IBM SPx Parallel File System (PFS). The user may issue

a command from an application to import or export files directly to or from HPSS Movers to
PFS. COS specifications may be provided in the PFS import/export request to HPSS to facilitate
parallel data transfers between systems.

4. HPSS USE OF COS

COS in HPSS defines a set of performance, media, and usage attributes related to the behaviors
of a bitfile and its underlying physical storage. Every bitfile must have a COS identifier associ-
ated with it. The attributes of a COS are implicitly or explicitly linked with one or cheviee
hierarchiesandstorage classewithin the storage system. Device hierarchies in HPSS repre-
sent particular combinations of storage devices with policies controlling caching and migration

of data between the devices. A storage class identifies the stgpade.g., disk, tape) of a
particular device, together with COS-related characteristics of the device. COS definitions,
associated hierarchy identifiers, and storage classes are used by the Bitfile Server to select
appropriate devices and servers for space allocation and new storage segment creation. Each
COS definition used by the Bitfile Server is stored in Encina as non-volatile metadata. A simpli-
fied COS metadata structure kept by the Bitfile Server is shown below:

struct bfs_cos_md {

Version; /* HPSS version number */
COSild; /* Class of Service identifier*/
OpsSupported; /* 1/0 Operations supported */
MaxSize; /* Max size of bitfiles in COS*/
MinSize; /* Min size of bitfiles in COS*/
Activity; /* Amount of expected access */
Reliability; [* Expected reliability level */

XferRate; [* Expected transfer rate */
Latency; /* Expected transfer delay */
Hierld; [* Associated hierarchy id */

} bfs_cos_md _t;

In comparison, a storage class metadata structure in HPSS will contain many device-dependent
attributes as shown in the following example:

struct hpss_sclass_md {

SClassld; [* Storage Class identifier ~ */
SClassType; /* Device type for this class */
TransferRate; [* Transfer rate in kilobytes */
StripeSize; /* No. of elements in a stripe*/
StripeWidth; [* Size of a stripe in bytes */
BlockSize; /* Blocksize used on device */

OptimalAccessSize;/* Size for best data transfer*/
StorageSegmSize; [* Segment size used by client*/

MaxFileSize; /* Max size in bytes for class*/
MinFileSize; [* Min size of bytes for class*/
MigrPolicyld; /* Migration policy to use */
PurgePolicyld; /* Purge policy to use */
MPSId; /* Migration/Purge Server Id */
MediaType; /* General type (e.g., tape) */
MediaSubType; [* Specific type (e.g., 3490E)*/
AvglLatency; /* Delay before start of xfer */
WriteOps; /* Valid write I/O operations */
ReadOps; /* Valid read I/O operations */

} hpss_sclass_md_t;

Access activity is typically daily, weekly, monthly, or archival. Latency is the delay in seconds
between the time a request is received by a Storage Server and the time data begins to be trans-
mitted. This will normally be non-zero for tape devices due to mount delays. Valid I/O opera-

tions for a storage class may be RANDOM, PARALLEL, WRITE, WRITE_MANY, APPEND,

and READ. A COS hints structure and a GfiSrities structure, both roughly equivalent to the
COS definition described above, also exist to assist a client in selecting a suitable COS defini-
tion for a newly created bitfile. The priorities structure allows an HPSS client to specify a
weighting for each attribute supplied in the hints structure. Priorities currently represent one of
the following values: NONE, LOW, DESIRABLE, HIGHLY_DESIRABLE, or REQUIRED.
Pointers to the hints and priorities structures are two of the input parameters to the Bitfile Server
bfs_CreatéAPl, which is used to create a new bitfile, allocate space, and save relevant metadata.
A pointer to the COS definition structusetually used by the Bitfile Server when creating the
new bitfile is returned to the client as an output parameter of the call.

Using the HPSS Client API library, applications can specify an existing COS identifier for a file,
or fill in the COS hints and priorities structures to describe desired/required service attributes
for the file. The FTP quote command can also be used to specify a COS identifier when using
HPSS’s FTP Daemon. Creating a new file through the Client API is performed through an
hpss_Opeiall whose input parameters include (possibly null) pointers to COS hints and prior-
ities structures. When null pointers are passed, the Bitfile Server is free to use a default COS
definition for the new bitfile. The hpss_Open call returns a pointer to the COS definition used
by the Bitfile Server. The COSId of a bitfile can be obtained or modified by Bitfile Server
bfs_BitfileGetAttrandbfs_BitfileSetAttrgalls. Changing the COSId may be subject to admin-
istrative or operational constraints. The Bitfile Server also maintains the necessary device hier-
archy and storage class information that describe where and how the storage segments that
comprise the bitfile were physically stored. Bitfiles may reside on multiple devices simulta-
neously depending on the migration and caching schemes employed in a specific hierarchy.

In initial versions of HPSS, COS use is preliminary and some attributes supplied in a client-
generated hints structure will not affect system behavior. Currently, only the transfer rate
attribute has significant effect. The Bitfile Server either uses the specific COS identifier supplied
by the client, or finds aappropriately closeCOS identifier based primarily on the supplied
transfer rate value. If the client specifies the transfer rate’s priority as REQUIRED, and the
Bitfile Server does not have an existing COS definition that can satisfy the desired rate, the
request fails and HO_SUPPORError is returned to the client. Similarly, if an invalid COS
identifier is requested by a client, an error will be returned. Valid COSs are those that have been
previously defined in an SSM administrative procedure to create new Storage Server virtual
volumes and storage maps (the entities that actually provide storage space in HPSS). Virtual
volumes and storage maps are identified by storage class, and are used to provide storage
segments of that class to clients of the Storage Server.

The storage segment service is the mechanism used to obtain and access internal storage
resources. Clients of the Storage Server are presented with a storage segment address space
from O to N-1 where N is the byte length of the segment. The Bitfile Server provides a storage
class identifier and an allocation length during creation of new storage segments. To ensure
locating free space of appropriate type, the storage class must represent storage service
conforming to any client-specified COS hints and priorities. During the creation of new space,
only storage maps that have proper storage class are searched. If no storage map exists to fit the
requirements, &0_SPACE_FOUNI-Rrror is returned.

The COS structure was designed to be extensible, and additional attributes are planned to more
heavily influence server actions during data placement, data transfer, and file/fragment migra-
tion operations. A goal for future releases is better integration with large data management
systems, whose needs will require COS attributes for objects other than files. In particular, I/0
operations on data fragments necessary for resolving complex database queries will require new

COS capabilities. COS attributes are planned for controlling placement or collocation of related
files and data fragments on physical media to enable better use of HPSS by new data manage-
ment applications.

In the current COS implementation, an administrator must be responsible for creating COS and
storage class structures at the time HPSS servers are configured. This is necessary because the
storage resource objects managed by the Storage Server (i.e., virtual volumes, storage segments,
and storage maps) are all identified by the kind of storage they support. At least one COS must
be created for the Bitfile Server to use as a default for client requests that do not specify a COS
identifier or COS hint and priority structures. Using HPSS Storage System Management facil-
ities, which are based on an X-Windows graphical user interface environment, administrators
create new physical volumes, then virtual volumes, and finally, storage maps for the virtual
volumes. These must all exist before the creation of any storage segments. When an adminis-
trator creates a COS for the Bitfile Server, an accurate determination must be made whether the
attribute combination for the COS is sound. Definition of these structures might be based on
priori knowledge of devices. Specifying a COS needing a stripe width of four to meet a high
data rate when HPSS has only two drives at its disposal for parallel transfers would not work.
Administrative creation, modification, or deletion of metadata representing COS and storage
class is accomplished through the SSM management windows.

5. RELATED WORK

In previous hierarchical storage management systems used at Lawrence Livermore National
Laboratory (LLNL), QoS and COS capabilities were rare. A storage system called FILEM, in
use between 1976 and 1986 at LLNL's National Energy Research Supercomputer Center
(NERSC), restricted users to specifying a life-span co@deatival, long-life, or medium-life
Archival kept the file forever, but forced its migration to the lowest level device, at that time a
manual shelf operation. In exchange for long delays on retrieval, the user was charged a lower
cost. Long-life also kept the file in the system indefinitely, but an attempt was made to maintain
the file in a robotic archive for faster data retrieval than shelf. Medium-life caused the file to be
deleted after a time period determined by local site policies. Medium-life also tended to keep
the file on disk for faster access, but at substantially higher cost. No other attributes were avail-
able to influence the level of service received or corresponding cost accrued.

The Common File System (CFS) [12], developed by Los Alamos National Laboratory (LANL)

in 1980 and still running at LANL, NERSC, and other DOE laboratories, provided additional
QoS mechanisms that were somewhat improved but still limited. CFS allowed users to specify
a usage characteristic for new files (or to change that attribute for existing ones). Users could
tell the storage system that the file was to be active daily, weekly, monthly, infrequently, or for
only for a few days and then never again. The system used this access hint to place the file at an
appropriate initial level in the storage hierarchy, later migrating it to lower levels accordingly.
Users also could specify that a file be written to sets of mutually exclusive devices. If a user
wanted to write a file twice, and ensure each copy ended up on separate groups of disks or tapes
for the life of the file, it could be done with one command during initial storage.

The ability to determine disposition of data improved with NSL-UniTree, an early software
development project of the NSL. In NSL-UniTree, dynamic storage hierarchies [13] were
implemented to let clients define into what hierarchy their file would be placed. The placement
determined how caching and migration to different storage devices would be performed and
affected access time to the file, as well as data rates. Clients of NSL-UniTree were able to
specify a hierarchy identifier when creating and storing a new file in the same manner as spec-
ifying COS identifiers in HPSS. Dynamically managed hierarchies eased the insertion of new

technologies and allowed existing files to automatically take advantage of new devices.

New kinds of metadata, resource attributes, and other abstractions have been proposed or imple-
mented to help optimize use of archival storage systems by non-traditional clients, including
relational or object-oriented databases and scientific data management systems [14,15,16,17].
Non-traditional clients do not necessarily use a file as the data entity that is stored and retrieved.
In many of these applications, specifying values for overall data transfer rate or parallel transfer
stripe widths, as is done in HPSS, may not be meaningful. Other performance issues such as
overall latency reduction, close clustering of related data chunks, deadline and continuity
requirements, data compression, and redundancy may take precedence.

A recent IEEE-sponsored effort [18] to investigate metadata issues for access to large scientific
and technical databases explored problems of storage and archive. Metadata requirements are
driven by applications, but also affect storage and software system performance. Since metadata
is used to improve the understanding of data content, but also to describe data access concerns,
system-level metadata addressing accessibility is closely related to HPSS COS. Attributes are
needed that address files or data fragments related by application usage and how these frag-
ments should be stored and migrated. This becomes important in applications that need to
manage and query specific, but possibly widely scattered, pieces of information in large data
collections. There are several efforts underway to better understand requirements to effectively
manage large volumes of scientific data stored on mass storage devices.

One such project, Optimass [19], has ties to the developers of HPSS, and concentrated on multi-
dimensional climate modelling data. In Optimass, large datasets are passed through a parti-
tioning engine driven by several query prediction tools that help estimate data usage patterns.
Data fragments, related by application use, are then stored appropriately in the archival system.
Fragments are also re-assembled after retrieval from the storage system, based on actual appli-
cation queries. In Optimass, the partitioner constructs and stores partitioning information in an
external metadata database for subsequent use by the reassembler as necessary. This project
designed a COS-like interface between the data partitioning/reassembly engines and high-
performance mass storage systems such as NSL-UniTree and HPSS. The interface provides an
ability to influence or control allocation of space and physical placement of data by defining
several key COS attributes associated wéta cluster{fragments of data related by applica-

tion use), and to provide these attributes to the storage system through modified client inter-
faces. This permits the storage system to intelligently bundle the data clusters for a targeted
tertiary storage device (usually a slow, sequential-access tape).

The Sequoia 2000 project [20] and the related Mariposa effort [21] are also investigating inte-
gration of storage and large data management systems. These projects are working on extending
database management system optimizations to deal effectively with tertiary devices and the
movement of data between storage systems. Mariposa proposes using several QoS and Trading
Function concepts, including subcontracts between subsystems, and open competition for
services in a free-market economic model, to explore service guarantees among distributed,
cooperating servers. Some of these servers will be performing hierarchical storage management
tasks. A typical application might be to provide guaranteed delivery of frames (at a fixed rate)
to a high-resolution rendering engine and display. A storage system may need to decide whether
or not to accept or decline a subcontract for data movement out of tertiary storage at a specific
transfer rate as part of an overall contract guarantee made by a networking service.

6. CONCLUDING REMARKS

Most current work on QoS concepts for high-performance storage, including HPSS, concen-
trate on attributes related to the cost and performance concerns of initial hierarchical data place-

ment and subsequent data transfer speeds. Emphasis on QoS attributes for other issues such as
guaranteed delivery, reliability, and continuity is also needed. Providing storage systems with
negotiating capabilities in free-market network environments may also be required. Under-
standing guaranteed services and third-party brokers using RM-ODP Trading Function ideas
would be a beneficial addition to new mass storage system implementations and could provide
better communication with new types of storage service consumers.

A significant problem is that archival mass storage systems and new consumers of storage, such
as large data management systems, do not communicate well. This is an ongoing research area,
but continues to present problems for non-traditional clients of storage service. For example,
storage systems and database systems can both provide various request optimization, data repli-
cation, and parallel execution capabilities, but integration of these two types of systems is diffi-
cult. An ability for customers to negotiate and receive adequate QoS means high-performance
mass storage developers must address how to communicate available services to a consumer-
oriented world, possibly through brokers. This involves more than development of standard or
extended file transfer interfaces.

Properly applying metadata to manage data storage and access has also not yet been addressed
in a systematic manner. An issue for HPSS is how to decide where application-related metadata
and COS information belongs. Does this information always belong in an external database?
How should the information be translated into HPSS COS attributes? Existing Encina metadata
management capabilities in HPSS are not infinitely scalable. HPSS is investigating increasing
and decreasing the total metadata associated with storage objects under server control and
effects on system efficiency.

As requirements grow for high-performance storage systems to support application-specific
views instead of traditional file-system views, the need for a richer set of COS and QoS
attributes for storage is obvious. As storage systems and computing environments become more
distributed, the need to provide better alignment between high-performance storage and open
distributed processing standards is also clear. We have incorporated several open systems
concepts into the HPSS hierarchical storage management design, but new extensions to COS
are required to become aligned with RM-ODP QoS concepts. We believe this to be worth
further investigation.

ACKNOWLEDGMENTS

This work was, in part, performed by the Lawrence Livermore National Laboratory under
contract number W-7405-Eng-48 and Cooperative Research and Development Agreements
under auspices of the U.S. Department of Energy, and by IBM U.S. Federal under High Perfor-
mance Data Systems Independent Research and Development and other internal funding. For
more information about the National Storage Laboratory and HPSS contact:

Dick Watson, LLNL (or) Bob Coyne, IBM U.S. Federal
+1 510 422 9216 +1 713 282 8039
dwatson@lInl.gov coyne@vnet.ibm.com

Access the HPSS tutorial on World Wide Web at URL http://www.ornl.gov/HPSS/HPSS.html

REFERENCES

1. S.Coleman and S. Miller (eddV)ass Storage System Reference Model: VersitifZE Technical
Committee on Mass Storage Systems and Technology, May 1990.

2. R. Garrison, et al. (edsReference Model for Open Storage Systems Interconnection: Mass Storage
Reference Model Version EEEE Storage System Standards Working Group, September 1994.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

ISO/IEC JTC1/SC 21/WGT he Basic Reference Model of Open Distributed ProcesBilgTS
Recs. X.901 to X. 904 | ISO/IEC 10746, 1994.

R. Coyne, H. Hulen, and R. Watson, The High Performance Storage S9siengupercomputing
'93, Portland, OR, November 15-19, 1993.

D. Teaff, R. Coyne, and R. Watson, The Architecture of the High Performance Storage System,
Fourth NASA GSFC Conference on Mass Storage Systems and TechnQlotigee Park, MD,
March 1995.

R. Coyne, and R. Watson, The National Storage Laboratory: Overview and Satu3 hirteenth
IEEE Symposium on Mass Storage Systémsecy, France, June 13-16, 1994.

S. Coleman and R. Watson, The Emerging Paradigm Shift in Storage System Architgpaaias,
Issue on Storage, Proc. of the IEE&pril 1993.

S. Coleman and R. Watson, New Architectures to Reduce I/O Bottlenecks in High Performance Sys-
tems,Proc. 26th Hawaii International Conference on System Sciehtzaas, HI, January 5-8, 1993.

S. Howe (ed.)High Performance Computing and Communications: Toward a National Informa-
tion Infrastructure A Report by the Committee on Physical, Mathematical, and Engineering Sci-
ences; Federal Coordinating Council for Science, Engineering, and Technology; Office of Science
and Technology Policy, 1994.

ISO/IEC JTC1/SC21/WGDraft ODP Trading FunctionlTU-TS Rec. X.9tr | ISO/IEC 13235,
1994.

R. Hyer, R. Ruef, and R. Watson, High Performance Direct Network Data Transfers at the National
Storage Laboratoryroc. Twelfth IEEE Symposium on Mass Storage Syskdomterey, CA, April
26-29, 1993.

T. McLarty, B. Collins and M. Devaney, A Functional View of the Los Alamos Central File System,
Digest of Papers, Sixth IEEE Symposium on Mass Storage Syg&imSO, June 1984.

L. Buck and R. Coyne, Dynamic Hierarchies and Optimization in Distributed Storage Systems,
Digest of Papers, Eleventh IEEE Symposium on Mass Storage SyStealser 7-10, 1991.

L. Roelofs and W. Campbell, Applying Semantic Data Modeling Technigues to Large Mass Storage
System Designd)igest of Papers, Tenth IEEE Symposium on Mass Storage Systentsrey,
CA, May 7-10, 1990.

R. Grossman, et al., A Proof-of-Concept Implementation Interfacing an Object Manager with a
Hierarchical Storage Systefroc. Twelfth IEEE Symposium on Mass Storage Syskéomserey,
CA, April 26-29, 1993.

M. Tankenson and S. Wright, A Data Distribution Strategy for the 90s (Files Are Not Enough),
Compilation of Papers, Third NASA GSFC Conference on Mass Storage Systems and Teghnologies
College Park, MD, Oct. 1993.

J. Shiers, Data Management Requirements for High Energy Physics in the Ye&r@O0Dyelfth
IEEE Symposium on Mass Storage Systdfositerey, CA, April 26-29, 1993.

S. Louis and M. Gary, Storage and Archive Group Summary Report, IEEE Computer Society Tech-
nical Committee on Mass Storage Systems Workshop on Metadata for Scientific and Technical
Databases, May 16-18, 1994.

L. Chen, et al., Efficient Organization and Access of Multi-Dimensional Datasets on Tertiary Stor-
age Systems, submitted lttformation Systems Journal, Special Issue on Scientific Datgliases
be published 1995.

M. Stonebraker, J. Frew and J. Dozi€he Sequoia 2000 Architecture and Implementation Strat-
egy Sequoia 2000 Technical Report 93/23, University of California, Berkeley, March 1993.

M. Stonebraker, P. Aoki, R. Devine, W. Litwin and M. Olson, Mariposa: A New Architecture for
Distributed DataProc. Tenth Int. Conference on Data Engineeridguston, TX, February 1994.

Technicallnformation Departments Lawrence Livermore National Laboratory
University of California « Livermore, California 94551

